Pre-print

  1. U. S. Kamilov, C. A. Bouman, G. T. Buzzard, and B. Wohlberg, “Plug-and-Play Methods for Integrating Physical and Learned Models in Computational Imaging.”
    [arXiv:2203.17061]
  2. W. Shangguan, Y. Sun, W. Gan, and U. S. Kamilov, “Learning Cross-Video Neural Representations for High-Quality Frame Interpolation.”
    [Project Page] [arXiv:2203.00137]
  3. Y. Hu, J. Liu, X. Xu, and U. S. Kamilov, “Monotonically Convergent Regularization by Denoising.”
    [arXiv:2202.04961]
  4. A. H. Al-Shabili, X. Xu, I. Selesnick, and U. S. Kamilov, “Bregman Plug-and-Play Priors.”
    [arXiv:2202.02388]
  5. R. Liu, Y. Sun, J. Zhu, L. Tian, and U. S. Kamilov, “Zero-Shot Learning of Continuous 3D Refractive Index Maps from Discrete Intensity-Only Measurements.”
    [arXiv:2112.00002]
  6. S. Kahali, S. V. V. N. Kothapalli, X. Xu, U. S. Kamilov, and D. Yablonskiy, “Deep-Learning-Based Accelerated and Noise-Suppressed Estimation (DANSE) of quantitative Gradient Recalled Echo (qGRE) MRI metrics associated with Human Brain Neuronal Structure and Hemodynamic Properties.”
    [doi:10.1101/2021.09.10.459810]

In Press

  1. W. Gan, Y. Sun, C. Eldeniz, J. Liu, H. An, and U. S. Kamilov, “Deformation-Compensated Learning for Image Reconstruction without Ground Truth,” IEEE Trans. Med. Imag., in press.
    [doi:10.1109/tmi.2022.3163018] [arXiv:2107.05533]
  2. S. Chen, T. J. Fraum, C. Eldeniz, J. Mhlanga, W. Gan, T. Vahle, U. B. Krishnamurthy, D. Faul, H. M. Gach, M. M. Binkley, U. S. Kamilov, R. Laforest, and H. An, “MR-Assisted PET Respiratory Motion Correction Using Deep-Learning Based Short-Scan Motion Fields,” Magn. Reson. Med., in press.
    [doi:10.1002/mrm.29233]

Recent Publications

  1. X. Xu, S. V. V. N. Kothapalli, J. Liu, S. Kahali, W. Gan, D. Yablonskiy, and U. S. Kamilov, “Learning-based Motion Artifact Removal Networks for Quantitative R2* Mapping,” Magn. Reson. Med., vol. 88, no. 1, pp. 106-119, July 2022.
    [doi:10.1002/mrm.29188] [arXiv:2109.01622]
  2. Z. Hou, C. A. Guertler, R. J. Okamoto, H. Chen, J. R. Garbow, U. S. Kamilov, and P. V. Bayly, “Estimation of the mechanical properties of a transversely isotropic material from shear wave fields via artificial neural networks,” J. Mech. Behav. Biomed. Mater., vol. 126, p. 105046, February 2022.
    [doi:10.1016/j.jmbbm.2021.105046]
  3. J. Liu, S. Asif, B. Wohlberg, and U. S. Kamilov, “Recovery Analysis for Plug-and-Play Priors using the Restricted Eigenvalue Condition,” Proc. Ann. Conf. Neural Information Processing Systems (NeurIPS 2021) (December 6-14).
    [OpenReview] [NeurIPS] [arXiv:2106.03668] [Acceptance rate: 2371/9122 = 26%]
  4. C. Eldeniz, W. Gan, S. Chen, T. J. Fraum, D. R. Ludwig, Y. Yan, J. Liu, T. Vahle, U. B. Krishnamurthy, U. S. Kamilov, and H. An, “Phase2Phase: Respiratory Motion-Resolved Reconstruction of Free-Breathing Magnetic Resonance Imaging Using Deep Learning Without a Ground Truth for Improved Liver Imaging,” Invest. Radiol., vol. 56, no. 12, pp. 809-819, December 2021.
    [doi:10.1097/rli.0000000000000792]
  5. Y. Sun, J. Liu, M. Xie, B. Wohlberg, and U. S. Kamilov, “CoIL: Coordinate-based Internal Learning for Tomographic Imaging,” IEEE Trans. Comput. Imag., vol. 7, pp. 1400-1412, November 2021.
    [doi:10.1109/tci.2021.3125564] [arXiv:2102.05181]

Notable Publications

  1. U. S. Kamilov, V. K. Goyal, and S. Rangan, “Message-Passing De-Quantization with Applications to Compressed Sensing,” IEEE Trans. Signal Process., vol. 60, no. 12, pp. 6270–6281, December 2012.
    [doi:10.1109/tsp.2012.2217334] [arXiv:1105.6368] [IEEE SPS Best Paper Award 2017]
  2. U. S. Kamilov, I. N. Papadopoulos, M. H. Shoreh, A. Goy, C. Vonesch, M. Unser, and D. Psaltis, 
“Learning Approach to Optical Tomography,” Optica, vol. 2, no. 6, pp. 517–522, June 2015.
    [doi:10.1364/optica.2.000517] [Nature “News and Views”]
  3. H.-Y. Liu, U. S. Kamilov, D. Liu, H. Mansour, and P. T. Boufounos, “Compressive Imaging with Iterative Forward Models,” Proc. IEEE Int. Conf. Acoustics, Speech and Signal Process. (ICASSP 2017) (New Orleans, USA, March 5-9), pp. 6025-6029.
    [doi:10.1109/ICASSP.2017.7953313] [ICASSP 2017 Student Paper Award finalist]
  4. U. S. Kamilov, V. K. Goyal, and S. Rangan, “Generalized Approximate Message Passing Estimation from Quantized Samples,” Proc. 4th Int. Workshop on Computational Advances in Multi-Sensor Adaptive Process. (CAMSAP 2011) (San Juan, Puerto Rico, December 13-16), pp. 401-404.
    [10.1109/camsap.2011.6136027] [CAMSAP 2011 Student Paper Award finalist]
  5. Y. Sun, J. Liu, Y. Sun, B. Wohlberg, and U. S. Kamilov, “Async-RED: A Provably Convergent Asynchronous Block Parallel Stochastic Method using Deep Denoising Priors,” Proc. Int. Conf. Learn. Represent. (ICLR 2021) (Vienna, Austria, May 4-8).
    [OpenReview] [arXiv:2010.01446] [Spotlight: 114/2997 = 4%]