Skip to content
Skip to search
Skip to footer
2024
- Z. Zhang, Y. Hao, X. Jin, D. Yang, U. S. Kamilov, and G. D. Hugo, “Fast motion-compensated reconstruction for 4D-CBCT using deep learning-based groupwise registration,” Biomed. Phys. Eng. Express, in press.
[10.1088/2057-1976/ad97c1]
- A. K. Scott, D. M. Fodera, P. Yang, A. Arter, A. M. Hines, S. S. Kolluru, S. G. Zambuto, K. M. Myers, U. S. Kamilov, A. O. Odibo, M. L. Oyen, “Bioengineering approaches for patient-specific analysis of placenta structure and function,” Placenta, in press.
[10.1016/j.placenta.2024.08.005]
- Y. Hu, W. Gan, C. Ying, T. Wang, C. Eldeniz, J. Liu, Y. Chen, H. An, and U. S. Kamilov, “SPICER: Self-Supervised Learning for MRI with Automatic Coil Sensitivity Estimation and Reconstruction,” Magn. Reson. Med., vol. 92, no. 3, pp. 1048-1063, September 2024.
[Project Page] [10.1002/mrm.30121] [arXiv:2210.02584] [code]
- W. Gan, Q. Zhai, M. T. McCann, C. G. Cardona, U. S. Kamilov, and B. Wohlberg, “PtychoDV: Vision Transformer-Based Deep Unrolling Network for Ptychographic Image Reconstruction,” IEEE Open J. Signal Process., vol. 5, pp. 539-547, 2024.
[10.1109/OJSP.2024.3375276] [arXiv:2310.07504] [code]
- N. Yismaw, U. S. Kamilov, and M. S. Asif, “Domain Expansion via Network Adaptation for Solving Inverse Problems,” IEEE Trans. Comput. Imag., vol. 10, pp. 549-559, 2024.
[10.1109/TCI.2024.3377101] [arXiv:2310.06235]
- P. Cascarano, A. Benfenati, U. S. Kamilov, and X. Xu, “Constrained Regularization by Denoising With Automatic Parameter Selection,” IEEE Signal Process. Lett., vol. 31, pp. 556-560, 2024.
[10.1109/LSP.2024.3359569]
2023
- S. Chen, C. Eldeniz, T. J. Fraum, D. R. Ludwig, W. Gan, J. Liu, U. S. Kamilov, D. Yang, H. M. Gach, and H. An, “Respiratory motion management using a single rapid MRI scan for a 0.35 T MRI-Linac system,” Med. Phys., vol. 50, no. 10, pp. 6163-6176, October 2023.
[10.1002/mp.16469]
- Z. Zou, J. Liu, B. Wohlberg, and U. S. Kamilov, “Deep Equilibrium Learning of Explicit Regularizers for Imaging Inverse Problems,” IEEE Open J. Signal Process, vol. 4, pp. 390-398, 2023.
[Project Page] [10.1109/ojsp.2023.3296036] [arXiv:2303.05386] [code]
- P. Goyes-Penafiel, E. Vargas, C. V. Correa, Y. Sun, U. S. Kamilov, B. Wohlberg, H. Arguello, “Coordinate-Based Seismic Interpolation in Irregular Land Survey: A Deep Internal Learning Approach,” in IEEE Trans. Geosci. Remote. Sens., vol. 61, pp. 1-12, 2023.
[10.1109/TGRS.2023.3290468]
- W. Gan, C. Ying, P. Eshraghi, T. Wang, C. Eldeniz, Y. Hu, J. Liu, Y. Chen, H. An, and U. S. Kamilov, “Self-Supervised Deep Equilibrium Models for Inverse Problems with Theoretical Guarantees,” IEEE Trans. Comput. Imag., vol. 9, pp. 796-807, 2023.
[10.1109/tci.2023.3304475] [arXiv:2210.03837] [code]
- S. Kahali, S. V. V. N. Kothapalli, X. Xu, U. S. Kamilov, and D. Yablonskiy, “Deep-Learning-Based Accelerated and Noise-Suppressed Estimation (DANSE) of quantitative Gradient Recalled Echo (qGRE) MRI metrics associated with Human Brain Neuronal Structure and Hemodynamic Properties,” NMR Biomed., vol. 36, no. 5, pp. e4883, May 2023.
[10.1002/nbm.4883] [biorxiv]
- Z. Zhang, J. Liu, D. Yang, U. S. Kamilov, and G. Hugo, “Deep learning-based motion compensation for four-dimensional cone-beam computed tomography (4D-CBCT) reconstruction,” Med. Phys., vol. 50, no. 2, pp. 808–820, February 2023.
[10.1002/mp.16103]
- U. S. Kamilov, C. A. Bouman, G. T. Buzzard, and B. Wohlberg, “Plug-and-Play Methods for Integrating Physical and Learned Models in Computational Imaging,” IEEE Signal Process. Mag., vol. 40, no. 1, pp. 85-97, January 2023.
[Project Page] [10.1109/msp.2022.3199595] [arXiv:2203.17061]
2022
- S. Shoushtari, J. Liu, Y. Hu, and U. S. Kamilov, “Deep Model-Based Architectures for Inverse Problems under Mismatched Priors,” IEEE J. Sel. Areas Inf. Theory, vol. 3, no. 3, pp. 468-480, September 2022.
[Project Page] [10.1109/jsait.2022.3220044] [arXiv:2207.13200]
- R. Liu, Y. Sun, J. Zhu, L. Tian, and U. S. Kamilov, “Recovery of Continuous 3D Refractive Index Maps from Discrete Intensity-Only Measurements using Neural Fields,” Nat. Mach. Intell., vol. 4, pp. 781–791, September 2022.
[Project Page] [10.1038/s42256-022-00530-3] [arXiv:2112.00002] [code]
- W. Gan, Y. Sun, C. Eldeniz, J. Liu, H. An, and U. S. Kamilov, “Deformation-Compensated Learning for Image Reconstruction without Ground Truth,” IEEE Trans. Med. Imag., vol. 41, no. 9, pp. 2371-2384, September 2022.
[Project Page] [10.1109/tmi.2022.3163018] [arXiv:2107.05533] [code]
- S. Chen, T. J. Fraum, C. Eldeniz, J. Mhlanga, W. Gan, T. Vahle, U. B. Krishnamurthy, D. Faul, H. M. Gach, M. M. Binkley, U. S. Kamilov, R. Laforest, and H. An, “MR-Assisted PET Respiratory Motion Correction Using Deep-Learning Based Short-Scan Motion Fields,” Magn. Reson. Med., vol. 88, no. 2, pp. 676-690, 2022.
[10.1002/mrm.29233]
- X. Xu, S. V. V. N. Kothapalli, J. Liu, S. Kahali, W. Gan, D. Yablonskiy, and U. S. Kamilov, “Learning-based Motion Artifact Removal Networks for Quantitative R2* Mapping,” Magn. Reson. Med., vol. 88, no. 1, pp. 106-119, 2022.
[10.1002/mrm.29188] [arXiv:2109.01622] [code]
- Z. Hou, C. A. Guertler, R. J. Okamoto, H. Chen, J. R. Garbow, U. S. Kamilov, and P. V. Bayly, “Estimation of the mechanical properties of a transversely isotropic material from shear wave fields via artificial neural networks,” J. Mech. Behav. Biomed. Mater., vol. 126, p. 105046, February 2022.
[10.1016/j.jmbbm.2021.105046]
2021
- Y. Sun, J. Liu, M. Xie, B. Wohlberg, and U. S. Kamilov, “CoIL: Coordinate-based Internal Learning for Tomographic Imaging,” IEEE Trans. Comput. Imag., vol. 7, pp. 1400-1412, November 2021.
[10.1109/tci.2021.3125564] [arXiv:2102.05181] [code]
- C. Eldeniz, W. Gan, S. Chen, T. J. Fraum, D. R. Ludwig, Y. Yan, J. Liu, T. Vahle, U. B. Krishnamurthy, U. S. Kamilov, and H. An, “Phase2Phase: Respiratory Motion-Resolved Reconstruction of Free-Breathing Magnetic Resonance Imaging Using Deep Learning Without a Ground Truth for Improved Liver Imaging,” Invest. Radiol., vol. 56, no. 12, pp. 809-819, December 2021.
[10.1097/rli.0000000000000792]
- Y. Sun, Z. Wu, X. Xu, B. Wohlberg, and U. S. Kamilov, “Scalable Plug-and-Play ADMM with Convergence Guarantees,” IEEE Trans. Comput. Imag., vol. 7, pp. 849-863, July 2021.
[10.1109/tci.2021.3094062] [arXiv:2006.03224]
- J. Liu, Y. Sun, W. Gan, X. Xu, B. Wohlberg, and U. S. Kamilov, “SGD-Net: Efficient Model-Based Deep Learning with Theoretical Guarantees,” IEEE Trans. Comput. Imag., vol. 7, pp. 598-610, June 2021.
[10.1109/tci.2021.3085534] [arXiv:2101.09379]
2020
- Z. Wu, Y. Sun, A. Matlock, J. Liu, L. Tian, and U. S. Kamilov, “SIMBA: Scalable Inversion in Optical Tomography using Deep Denoising Priors,” IEEE J. Sel. Topics Signal Process., vol. 14, no. 6, pp. 1163-1175, October 2020.
[10.1109/jstsp.2020.2999820] [arXiv:1911.13241]
- J. Liu, Y. Sun, C. Eldeniz, W. Gan, H. An, and U. S. Kamilov, “RARE: Image Reconstruction using Deep Priors Learned without Ground Truth,” IEEE J. Sel. Topics Signal Process., vol. 14, no. 6, pp. 1088-1099, October 2020.
[10.1109/jstsp.2020.2998402] [arXiv:1912.05854] [supplement] [code]
- M. Torop, S. Kothapalli, Y. Sun, J. Liu, S. Kahali, D. A. Yablonskiy, and U. S. Kamilov, “Deep learning using a biophysical model for Robust and Accelerated Reconstruction (RoAR) of quantitative and artifact-free R2* images,” Magn. Reson. Med., vol. 84, pp. 2932-2942, 2020.
[10.1002/mrm.28344] [arXiv:1912.07087] [code]
- Y. Sun, J. Liu, and U. S. Kamilov, “Block Coordinate Regularization by Denoising,” IEEE Trans. Comput. Imag., vol. 6, pp. 908-921, 2020.
[10.1109/tci.2020.2996385] [arXiv:1905.05113] [code]
- X. Xu, Y. Sun, J. Liu, B. Wohlberg, and U. S. Kamilov, “Provable Convergence of Plug-and-Play Priors with MMSE denoisers,” IEEE Signal Process. Lett., vol. 27, pp. 1280-1284, 2020.
[10.1109/lsp.2020.3006390] [arXiv:2005.07685]
- G. Song, Y. Sun, J. Liu, Z. Wang, and U. S. Kamilov, “A New Recurrent Plug-and-Play Prior Based on the Multiple Self-Similarity Network,” IEEE Signal Process. Lett., vol. 27, pp. 451-455, 2020.
[10.1109/lsp.2020.2977214] [arXiv:1907.11793] [code]
2019
- Y. Sun, B. Wohlberg, and U. S. Kamilov, “An Online Plug-and-Play Algorithm for Regularized Image Reconstruction,” IEEE Trans. Comput. Imag., vol. 5, no. 3, pp. 395-408, September 2019.
[10.1109/tci.2019.2893568] [arXiv:1809.04693]
- W. Tahir, U. S. Kamilov, and L. Tian, “Holographic particle localization under multiple scattering,” SPIE Adv. Photon., vol. 1, no. 3, p. 036003, May/June 2019.
[ 10.1117/1.ap.1.3.036003] [arXiv:1807.11812]
2018
- H. Mansour, D. Liu, U. S. Kamilov, and P. T. Boufounos, “Sparse Blind Deconvolution for Distributed Radar Autofocus Imaging,” IEEE Trans. Comput. Imag., vol. 4, no. 4, pp. 537-551, December 2018.
[10.1109/tci.2018.2875375] [arXiv:1805.03269]
- E. Bostan, U. S. Kamilov, and L. Waller, “Learning-based Image Reconstruction via Parallel Proximal Algorithm,” IEEE Signal Process. Lett., vol. 25, no. 7, pp. 989-993, July 2018.
[10.1109/lsp.2018.2833812] [arXiv:1801.09518]
- Y. Sun, Z. Xia, and U. S. Kamilov, “Efficient and accurate inversion of multiple scattering with deep learning,” Opt. Express, vol. 26, no. 11, pp. 14678-14688, May 2018.
[10.1364/oe.26.014678] [arXiv:1803.06594] [code]
- H.-Y. Liu, D. Liu, H. Mansour, P. T. Boufounos, L. Waller, and U. S. Kamilov, “SEAGLE: Sparsity-Driven Image Reconstruction under Multiple Scattering,” IEEE Trans. Comput. Imag., vol. 4, no. 1, pp. 73-86, March 2018.
[10.1109/tci.2017.2764461] [arXiv:1705.04281]
2017
- U. S. Kamilov, H. Mansour, and B. Wohlberg, “A Plug-and-Play Priors Approach for Solving Nonlinear Imaging Inverse Problems,” IEEE Signal Process. Lett., vol. 24, no. 12, pp. 1872-1876, December 2017.
[10.1109/lsp.2017.2763583]
- U. S. Kamilov and P. T. Boufounos, “Motion-Adaptive Depth Superresolution,” IEEE Trans. Image Process, vol. 26, no. 4, pp. 1723-1731, April 2017.
[10.1109/tip.2017.2658944]
- U. S. Kamilov, “A Parallel Proximal Algorithm for Anisotropic Total Variation Minimization,” IEEE Trans. Image Process., vol. 26, no. 2, pp. 539-548, February 2017.
[10.1109/tip.2016.2629449]
- S. Rangan, A. K. Fletcher, P. Schniter, and U. S. Kamilov, “Inference for Generalized Linear Models via Alternating Directions and Bethe Free Energy Minimization,” IEEE Trans. Inf. Theory., vol. 63, no. 1, pp. 676-697, January 2017.
[10.1109/tit.2016.2619373] [arXiv:1501.01797]
2016
- U. S. Kamilov, D. Liu, H. Mansour, and P. T. Boufounos, “A Recursive Born Approach to Nonlinear Inverse Scattering,” IEEE Signal Process. Lett., vol. 23, no. 8, pp. 1052-1056, August 2016.
[10.1109/lsp.2016.2579647] [arXiv:1603.03768]
- U. S. Kamilov and H. Mansour, “Learning optimal nonlinearities for iterative thresholding algorithms,” IEEE Signal Process. Lett., vol. 23, no. 5, pp. 747–751, May 2016.
[10.1109/lsp.2016.2548245] [arXiv:1512.04754]
- U. S. Kamilov, I. N. Papadopoulos, M. H. Shoreh, A. Goy, C. Vonesch, M. Unser, and D. Psaltis, “Optical tomographic image reconstruction based on beam propagation and sparse regularization,” IEEE Trans. Comput. Imag., vol. 2, no. 1, pp. 59–70, March 2016.
[10.1109/tci.2016.2519261]
2015
- U. S. Kamilov, I. N. Papadopoulos, M. H. Shoreh, A. Goy, C. Vonesch, M. Unser, and D. Psaltis,
“Learning Approach to Optical Tomography,” Optica, vol. 2, no. 6, pp. 517–522, June 2015.
[10.1364/optica.2.000517] [Nature “News and Views”]
- U. S. Kamilov, I. N. Papadopoulos, M. H. Shoreh, D. Psaltis, and M. Unser, “Isotropic inverse-problem approach for two-dimensional phase unwrapping,” J. Opt. Soc. Am. A, vol. 32, no. 6, pp. 1092–1100, June 2015.
[10.1364/josaa.32.001092] [arXiv:1503.04744]
2014
- U. S. Kamilov, E. Bostan, and M. Unser, “Variational Justification of Cycle Spinning for Wavelet-Based Solutions of Inverse Problems,” IEEE Signal Process. Lett., vol. 21, no. 11, pp. 1326–1330, November 2014.
[10.1109/lsp.2014.2334306]
- U. S. Kamilov, S. Rangan, A. K. Fletcher, and M. Unser, “Approximate Message Passing with Consistent Parameter Estimation and Application to Sparse Learning,” IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2969–2985, May 2014.
[10.1109/tit.2014.2309005]
2013
- E. Bostan, U. S. Kamilov, M. Nilchian, and M. Unser, “Sparse Stochastic Processes and Discretization of Linear Inverse Problems,” IEEE Trans. Image Process., vol. 22, no. 7, pp. 2699–2710, July 2013.
[10.1109/tip.2013.2255305]
- A. Kazerouni, U. S. Kamilov, E. Bostan, and M. Unser, “Bayesian Denoising: From MAP to MMSE Using Consistent Cycle Spinning,” IEEE Signal Process. Lett., vol. 20, no. 3, pp. 249–252, March 2013.
[10.1109/lsp.2013.2242061]
- A. Amini, U. S. Kamilov, E. Bostan, and M. Unser, “Bayesian Estimation for Continuous-Time Sparse Stochastic Processes,” IEEE Trans. Signal Process., vol. 61, no. 4, pp. 907–920, February 2013.
[10.1109/tsp.2012.2226446]
- U. S. Kamilov, P. Pad, A. Amini, and M. Unser, “MMSE Estimation of Sparse Lévy Processes,” IEEE Trans. Signal Process., vol. 61, no. 10, pp. 137–147, January 2013.
[10.1109/tsp.2012.2222394]
2012
- U. S. Kamilov, V. K. Goyal, and S. Rangan, “Message-Passing De-Quantization with Applications to Compressed Sensing,” IEEE Trans. Signal Process., vol. 60, no. 12, pp. 6270–6281, December 2012.
[10.1109/tsp.2012.2217334] [arXiv:1105.6368] [IEEE SPS Best Paper Award 2017]
- U. S. Kamilov, A. Bourquard, A. Amini, and M. Unser, “One-Bit Measurements with Adaptive Thresholds,” IEEE Signal Process. Lett., vol. 19, no. 10., pp. 607–610, October 2012.
[10.1109/lsp.2012.2209640]
- U. S. Kamilov, E. Bostan, and M. Unser, “Wavelet Shrinkage with Consistent Cycle Spinning Generalizes Total Variation Denoising,” IEEE Signal Process. Lett., vol. 19, no. 4, pp. 187–190, April 2012.
[10.1109/lsp.2012.2185929]