Skip to content
Skip to search
Skip to footer
Pre-print
- C. Y. Park, S. Shoushtari, H. An, and U. S. Kamilov, “Measurement Score-Based Diffusion Model.”
[Project Page] [arXiv:2505.11853] [code]
- S. Shoushtari, E. P. Chandler, Y. Wang, M. S. Asif, and U. S. Kamilov, “Unsupervised Detection of Distribution Shift in Inverse Problems using Diffusion Models.”
[arXiv:2505.11482]
- C. Y. Park, M. T. McCann, C. Garcia-Cardona, B. Wohlberg, and U. S. Kamilov, “Random Walks with Tweedie: A Unified Framework for Diffusion Models.”
[Project Page] [arXiv:2411.18702] [code]
- Y. Hu, A. Peng, W. Gan, and U. S. Kamilov, “ADOBI: Adaptive Diffusion Bridge For Blind Inverse Problems with Application to MRI Reconstruction.”
[Project Page] [arXiv:2411.16535]
- E. P. Chandler, S. Shoushtari, B. Wohlberg, and U. S. Kamilov, “Closed-Form Approximation of the Total Variation Proximal Operator.”
[arXiv:2412.07718]
- N. Yismaw, U. S. Kamilov, and M. S. Asif, “Gaussian is All You Need: A Unified Framework for Solving Inverse Problems via Diffusion Posterior Sampling.”
[arXiv:2409.08906]
- S. Shoushtari, E. P. Chandler, J. Zhang, M. Senanayake, S. V. Pingali, M. Foston, and U. S. Kamilov, “PnP Restoration with Domain Adaptation for SANS.”
[arXiv:2403.10495]
In Press
- Y. Hu, A. Peng, W. Gan, P. Milanfar, M. Delbracio, and U. S. Kamilov, “Stochastic Deep Restoration Priors for Imaging Inverse Problems, Proc. Int. Conf. Mach. Learn. (ICML 2025) (Vancouver, Canada, July 13-19), in press.
[Project Page] [arXiv:2410.02057]
- C. Y. Park, Y. Hu, M. T. McCann, C. Garcia-Cardona, B. Wohlberg, and U. S. Kamilov, “Plug-and-Play Priors as a Score-Based Method,” Proc. IEEE Int. Conf. Image Proc. (ICIP 2025) (Anchorage, USA, September 14-17)
[Project Page] [arXiv:2412.11108] [code]
- M. Terris, U. S. Kamilov, and T. Moreau, “FiRe: Fixed-points of Restoration Priors for Solving Inverse Problems,” Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR 2025) (Nashville, TN, USA, June 11-15), in press
[arXiv:2411.18970]
- A. Li, W. Gan, and U. S. Kamilov, “Plug-and-Play Posterior Sampling for Blind Inverse Problems,” Proc. IEEE Stat. Signal Process. Workshop (SSP 2025) (Edinburgh, UK, June 8-11), in press.
- P. Goyes-Penafiel, H. Arguello, and U. S. Kamilov, “Enhancing Seismic Post-stack Reconstruction with Diffusion Models: Addressing Uncertainty and Structural Complexity,” Proc. IEEE Stat. Signal Process. Workshop (SSP 2025) (Edinburgh, UK, June 8-11), in press.
- N. T. Yismaw, U. S. Kamilov, and M. S. Asif, “Covariance-Corrected Diffusion Models for Solving Inverse Problems,” Proc. IEEE Stat. Signal Process. Workshop (SSP 2025) Edinburgh, UK, June 8-11), in press.
- H. Gao, W. Gan, Y. Hu, H. An, and U. S. Kamilov, “A Self-Supervised Diffusion Bridge for MRI Reconstruction,” Proc. IEEE Int. Symp. Biomed. Imaging (ISBI 2025) Houston, TX, USA, February 28-March 4), in press.
[arXiv:2501.03430]
- A. K. Scott, D. M. Fodera, P. Yang, A. Arter, A. M. Hines, S. S. Kolluru, S. G. Zambuto, K. M. Myers, U. S. Kamilov, A. O. Odibo, M. L. Oyen, “Bioengineering approaches for patient-specific analysis of placenta structure and function,” Placenta, in press.
[10.1016/j.placenta.2024.08.005]
Recent Publications
- C. Park, W. Gan, Z. Zou, Y. Hu, Z. Sun, U. S. Kamilov, “Efficient Model-Based Deep Learning via Network Pruning and Fine-Tuning,” J. Math. Imaging Vis., vol. 67, no. 21, 2025.
[10.1007/s10851-025-01241-1] [arXiv:2311.02003]
- X. Xu, W. Gan, S. V.V.N. Kothapalli, D. A. Yablonskiy, and U. S. Kamilov, “CoRRECT: A Deep Unfolding Framework for Motion-Corrected Quantitative R2* Mapping,” J. Math. Imaging Vis., vol. 67, no. 20, 2025.
[Project Page] [10.1007/s10851-025-01236-y] [arXiv:2210.06330]
- P. Goyes-Penafiel, U. S. Kamilov, and H. Arguello, “CDDIP: Constrained Diffusion-Driven Deep Image Prior for Seismic Data Reconstruction,” IEEE Geosci. Remote Sens. Lett., vol. 22, pp. 1-5, 2025.
[10.1109/LGRS.2025.3545860] [arXiv:2407.17402]
- W. Gan, H. Xie, C. von Gall, G. Platsch, M. T. Jurkiewicz, A. Andrade, U. C. Anazodo, U. S. Kamilov, H. An, and J. Cabello, “Pseudo-MRI-Guided PET Image Reconstruction Method Based on a Diffusion Probabilistic Model,” vol. 9, no. 4, pp. 412-420, April 2025.
[10.1109/TRPMS.2025.3528728] [arXiv:2403.18139]
- Z. Zhang, Y. Hao, X. Jin, D. Yang, U. S. Kamilov, and G. D. Hugo, “Fast motion-compensated reconstruction for 4D-CBCT using deep learning-based groupwise registration,” Biomed. Phys. Eng. Express, vol. 11, no. 1, p. 015030, 2025.
[10.1088/2057-1976/ad97c1]
Notable Publications
- C. Park, S. Shoustari, W. Gan, and U. S. Kamilov, “Convergence of Nonconvex PnP-ADMM With MMSE Denoisers,” Proc. Int. Workshop on Computational Advances in Multi-Sensor Adaptive Process. (CAMSAP 2023) (Los Suenos, Costa Rica, December 10-13), pp. 511-515.
[Project Page] [10.1109/CAMSAP58249.2023.10403463] [CAMSAP 2023 Student Paper Award finalist]
- U. S. Kamilov, V. K. Goyal, and S. Rangan, “Message-Passing De-Quantization with Applications to Compressed Sensing,” IEEE Trans. Signal Process., vol. 60, no. 12, pp. 6270–6281, December 2012.
[10.1109/tsp.2012.2217334] [arXiv:1105.6368] [IEEE SPS Best Paper Award 2017]
- U. S. Kamilov, I. N. Papadopoulos, M. H. Shoreh, A. Goy, C. Vonesch, M. Unser, and D. Psaltis,
“Learning Approach to Optical Tomography,” Optica, vol. 2, no. 6, pp. 517–522, June 2015.
[10.1364/optica.2.000517] [Nature “News and Views”]
- H.-Y. Liu, U. S. Kamilov, D. Liu, H. Mansour, and P. T. Boufounos, “Compressive Imaging with Iterative Forward Models,” Proc. IEEE Int. Conf. Acoustics, Speech and Signal Process. (ICASSP 2017) (New Orleans, USA, March 5-9), pp. 6025-6029.
[10.1109/ICASSP.2017.7953313] [ICASSP 2017 Student Paper Award finalist]
- U. S. Kamilov, V. K. Goyal, and S. Rangan, “Generalized Approximate Message Passing Estimation from Quantized Samples,” Proc. 4th Int. Workshop on Computational Advances in Multi-Sensor Adaptive Process. (CAMSAP 2011) (San Juan, Puerto Rico, December 13-16), pp. 401-404.
[10.1109/camsap.2011.6136027] [CAMSAP 2011 Student Paper Award finalist]
- Y. Sun, J. Liu, Y. Sun, B. Wohlberg, and U. S. Kamilov, “Async-RED: A Provably Convergent Asynchronous Block Parallel Stochastic Method using Deep Denoising Priors,” Proc. Int. Conf. Learn. Represent. (ICLR 2021) (Vienna, Austria, May 4-8).
[OpenReview] [arXiv:2010.01446] [Spotlight: 114/2997 = 4%]