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iPhone 7 with 
 12 MP camera

Raw: 26 MB JPEG: 500 KB

• Large amount of measured data 
• Most of this data is thrown away afterwards
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Energy of natural images is highly concentrated
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Wavelet transform is at the heart of JPEG-2000 
image compression standard
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A long established sensing pipeline in imaging
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A long established sensing pipeline in imaging
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What are possible  
limitations of this pipeline?
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What happens if we simply take less measurements?
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Compressive imaging requires  
some theory and advanced algorithms

What happens if we simply take less measurements?

True object AlgorithmImaging system
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Least-squares solution (i.e., basic reconstruction)

Remarks: 
1. Noise amplification 
2. Bad for compressive imaging

Reconstruction
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some theory and advanced algorithms

What happens if we simply take less measurements?

True object AlgorithmImaging system
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Tikhonov regularization (i.e., 20th century technology)
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Andrey N. Tikhonov 
(1906-1993)

Reconstruction

Remarks: 
1. Blurry images 
2. Linear solution



Compressive imaging requires  
some theory and advanced algorithms

What happens if we simply take less measurements?

True object AlgorithmImaging system
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Sparse regularization:

Reconstruction
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Remarks: 
1. Compressive acquisition 
2. Nonlinear algorithms



Compressive imaging requires  
some theory and advanced algorithms

First part of the course will cover the  
theory of compressive imaging:

David  
Donoho

Emmanuel 
Candes

Candès, Romberg, Tao, IEEE Trans. Inf. Theory, 2006 
Donoho, IEEE Trans. Inf. Theory, 2006

• How to optimally measure? 
• How many measurements are needed? 
• How to reconstruct?

Wired, March 2010 Single Pixel Camera



Compressive imaging requires  
some theory and advanced algorithms

Application: MRI done 10x faster

H �f

Lustig et al., IEEE Signal Process. Mag., 2008

thresholding and interference cancellation at each iteration, so
there is a close connection between our exposition and more
formal approaches [25], [27], [29].

APPLICATIONS OF COMPRESSED SENSING TO MRI
We now describe four potential applications of CS in MRI. The
three requirements for successful CS come together differently
in different applications. Of partic-
ular interest is the way in which
different applications face differ-
ent constraints, imposed by MRI
scanning hardware or by patient
considerations, and how the
inherent freedom of CS to choose
sampling trajectories and sparsify-
ing transforms plays a key role in
matching the constraints.

RAPID 3-D ANGIOGRAPHY
Angiography is important for diagnosis of vascular disease.
Often, a contrast agent is injected, significantly increasing
the blood signal compared to the background tissue. In
angiography, important diagnostic information is contained
in the dynamics of the contrast agent bolus. Capturing the
dynamics requires high spatial and temporal resolution of a
large FOV, obviously a very difficult task. Today MR angiogra-
phy scans are often undersampled [3], [11], obtaining
improved spatial resolution and temporal resolution at the
expense of undersampling artifacts.

CS is particularly suitable for angiography. As shown in
Figure 3, angiograms are are inherently sparse in the pixel repre-
sentation and by spatial finite differencing. The need for high
temporal and spatial resolution strongly encourages undersam-
pling. CS improves current strategies by significantly reducing
the artifacts that result from undersampling.

In this example, we apply CS to 3-D Cartesian contrast-
enhanced angiography, which is the most common scheme
in clinical practice. Figure 8 illustrates the collection
scheme, acquiring equispaced parallel lines in k-space.

Choosing a pseudorandom subset with variable k-space den-
sity of 10% of those lines combines undersampling with low
coherence. Figure 8 shows a maximum intensity projection
(MIP) through the 3-D volume of several reconstructions. CS
is able to significantly accelerate MR angiography, enabling
better temporal resolution or alternatively improving the res-
olution of current imagery without compromising scan time.

The nonlinear reconstruction in
CS avoids most of the artifacts
that appear in linear reconstruc-
tion from undersampled data.

WHOLE-HEART
CORONARY IMAGING
X-ray coronary angiography is the
gold standard for evaluating coro-
nary artery disease, but it is inva-

sive. Multislice X-ray CT is a noninvasive alternative but
requires high doses of ionizing radiation. MRI is emerging as a
noninvasive, nonionizing alternative.

Coronary arteries are constantly in motion, making
high-resolution imaging a challenging task. The effects of
heart motion can be minimized by synchronizing acquisi-
tions to the cardiac cycle. The effect of breathing can be
minimized by tracking and compensating for respiratory
motion or by simply imaging during a short breath-held
interval. However, breath-held cardiac-triggered approaches
face strict timing constraints and very short imaging win-
dows. The number of acquisitions is limited to the number
of cardiac cycles in the breath-hold period. The number of
heart-beats per period is itself limited—sick patients cannot
be expected to hold their breath for long! Also, each acquisi-
tion must be very short to avoid motion blurring. In addi-
tion, many slices must be collected to cover the entire
heart. These constraints on breath-held cardiac triggered
acquisitions traditionally resulted in limited spatial resolu-
tion with partial coverage of the heart. Compressed sensing
can accelerate data acquisition, allowing the entire heart to
be imaged in a single held breath [30].

[FIG8] 3-D Contrast enhanced angiography. Right: Even with 10-fold undersampling CS can recover most blood vessel information
revealed by Nyquist sampling; there is significant artifact reduction compared to linear reconstruction; and a significant resolution
improvement compared to a low-resolution centric k-space acquisition. Left: The 3-D Cartesian random undersampling configuration.

kz

ky

kx

x

y

z

3-D Cartesian
Sampling Configuration Nyquist Sampling Low Resolution Linear CS

IEEE SIGNAL PROCESSING MAGAZINE [79] MARCH 2008

THE CONCEPTS AND APPROACHES
WE DISCUSS HERE MAY

POTENTIALLY ALLOW ENTIRELY
NEW APPLICATIONS OF MRI,
ONES CURRENTLY THOUGHT

TO BE INTRACTABLE. 

Authorized licensed use limited to: Stanford University. Downloaded on June 4, 2009 at 17:49 from IEEE Xplore.  Restrictions apply.

thresholding and interference cancellation at each iteration, so
there is a close connection between our exposition and more
formal approaches [25], [27], [29].

APPLICATIONS OF COMPRESSED SENSING TO MRI
We now describe four potential applications of CS in MRI. The
three requirements for successful CS come together differently
in different applications. Of partic-
ular interest is the way in which
different applications face differ-
ent constraints, imposed by MRI
scanning hardware or by patient
considerations, and how the
inherent freedom of CS to choose
sampling trajectories and sparsify-
ing transforms plays a key role in
matching the constraints.

RAPID 3-D ANGIOGRAPHY
Angiography is important for diagnosis of vascular disease.
Often, a contrast agent is injected, significantly increasing
the blood signal compared to the background tissue. In
angiography, important diagnostic information is contained
in the dynamics of the contrast agent bolus. Capturing the
dynamics requires high spatial and temporal resolution of a
large FOV, obviously a very difficult task. Today MR angiogra-
phy scans are often undersampled [3], [11], obtaining
improved spatial resolution and temporal resolution at the
expense of undersampling artifacts.

CS is particularly suitable for angiography. As shown in
Figure 3, angiograms are are inherently sparse in the pixel repre-
sentation and by spatial finite differencing. The need for high
temporal and spatial resolution strongly encourages undersam-
pling. CS improves current strategies by significantly reducing
the artifacts that result from undersampling.

In this example, we apply CS to 3-D Cartesian contrast-
enhanced angiography, which is the most common scheme
in clinical practice. Figure 8 illustrates the collection
scheme, acquiring equispaced parallel lines in k-space.

Choosing a pseudorandom subset with variable k-space den-
sity of 10% of those lines combines undersampling with low
coherence. Figure 8 shows a maximum intensity projection
(MIP) through the 3-D volume of several reconstructions. CS
is able to significantly accelerate MR angiography, enabling
better temporal resolution or alternatively improving the res-
olution of current imagery without compromising scan time.

The nonlinear reconstruction in
CS avoids most of the artifacts
that appear in linear reconstruc-
tion from undersampled data.

WHOLE-HEART
CORONARY IMAGING
X-ray coronary angiography is the
gold standard for evaluating coro-
nary artery disease, but it is inva-

sive. Multislice X-ray CT is a noninvasive alternative but
requires high doses of ionizing radiation. MRI is emerging as a
noninvasive, nonionizing alternative.

Coronary arteries are constantly in motion, making
high-resolution imaging a challenging task. The effects of
heart motion can be minimized by synchronizing acquisi-
tions to the cardiac cycle. The effect of breathing can be
minimized by tracking and compensating for respiratory
motion or by simply imaging during a short breath-held
interval. However, breath-held cardiac-triggered approaches
face strict timing constraints and very short imaging win-
dows. The number of acquisitions is limited to the number
of cardiac cycles in the breath-hold period. The number of
heart-beats per period is itself limited—sick patients cannot
be expected to hold their breath for long! Also, each acquisi-
tion must be very short to avoid motion blurring. In addi-
tion, many slices must be collected to cover the entire
heart. These constraints on breath-held cardiac triggered
acquisitions traditionally resulted in limited spatial resolu-
tion with partial coverage of the heart. Compressed sensing
can accelerate data acquisition, allowing the entire heart to
be imaged in a single held breath [30].

[FIG8] 3-D Contrast enhanced angiography. Right: Even with 10-fold undersampling CS can recover most blood vessel information
revealed by Nyquist sampling; there is significant artifact reduction compared to linear reconstruction; and a significant resolution
improvement compared to a low-resolution centric k-space acquisition. Left: The 3-D Cartesian random undersampling configuration.
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Big interest from leading companies: 
Siemens, GE, Phillips, and etc.



Compressive imaging requires  
some theory and advanced algorithms

Application: Autonomous driving

Degraux, Kamilov, Boufounos, and Liu., IEEE ICIP, 2018
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ABSTRACT

We present a new method for joint automatic extrinsic calibration
and sensor fusion for a multimodal sensor system comprising a LI-
DAR and an optical camera. Our approach exploits the natural align-
ment of depth and intensity edges when the calibration parameters
are correct. Thus, in contrast to a number of existing approaches, we
do not require the presence or identification of known alignment tar-
gets. On the other hand, the characteristics of each sensor modality,
such as sampling pattern and information measured, are significantly
different, making direct edge alignment difficult. To overcome this
difficulty, we jointly fuse the data and estimate the calibration param-
eters. In particular, the joint processing evaluates and optimizes both
the quality of edge alignment and the performance of the fusion algo-
rithm using a common cost function on the output. We demonstrate
accurate calibration in practical configurations in which depth mea-
surements are sparse and contain no reflectivity information. Exper-
iments on synthetic and real data obtained with a three-dimensional
LIDAR sensor demonstrate the effectiveness of our approach.

Index Terms— Multimodal calibration, depth superresolution,
intersensor registration, sensor fusion, total variation.

1. INTRODUCTION

As an increasing number of sensors and sensor modalities are used to
acquire scenes, consolidation or fusion of the sensor data is becom-
ing increasingly important. Data fusion exploits the distinct sensor
modalities to provide complementary information about the environ-
ment, overcome hardware limitations, or reduce data uncertainty due
to each individual sensor. An essential step in data fusion is extrinsic
calibration, which determines the geometric parameters of each sen-
sor, such as position and orientation, with respect to the other ones.
During fusion, the calibration parameters are used to compute the
geometric transformation that maps the output of each sensor to a
common frame of reference.

The fusion problem we consider in this paper is depth su-
perresolution: low-resolution depth data from a LIDAR sensor is
fused with an image from an optical camera to produce a higher-
resolution depth image [1–4]. In particular, we are interested in
calibrating and fusing the output of a LIDAR sensor that provides a
three-dimensional (3D) point-cloud of depth measurements with an
optical camera observing the same scene, as illustrated in Figure 1.

The key insight in our paper is that fusion and calibration are
complementary processes and improvements in one can be used to

∗The first author performed this work while at Mitsubishi Electric Re-
search Laboratories.

calibration 
and 

fusion high-resolution depth

LIDAR

camera

Fig. 1. High-resolution depth image obtained after calibrating and
fusing intensity image with a sparse depth-map. The highlights in
the figure show the biker.

boost the performance of the other. Thus, a joint calibration and fu-
sion method significantly improves the final output. In contrast to
existing approaches, which typically address either calibration or fu-
sion, but not both, the joint processing we describe works towards a
common objective: improving the final output of the pipeline. This
objective is reached by jointly optimizing over the calibration pa-
rameters and the fusion output, using the appropriate cost function
in each case.

In the next section we present a brief background and discuss in
detail the key elements of our approach, especially in relation to ex-
isting approaches. Section 3 formulates and develops our approach,
including the joint optimization algorithm. Section 4 presents exper-
imental results on real and synthetic data validating our approach.
Section 5 concludes and discusses our findings.

2. BACKGROUND

Most calibration approaches, including the one described in this pa-
per, are fundamentally based in identifying and matching features
acquired from the two sensors and determining the calibration pa-
rameters, i.e., a common geometric frame of reference, using those
features. The most common approaches require the existence of
known targets in the scene, which are used for feature matching.
These targets are typically placed in the scene during a calibration
stage and their signatures in the acquired scenes are used to estab-
lish correspondences across modalities. For example, [5] exploits a
planar checkerboard pattern and uses nonlinear least squares opti-
mization to calibrate a 2D laser scanner with a single optical cam-
era. Follow up work extended and refined this approach [6–8], while
others considered using other types of targets such as right-angled
triangles [9], circles [10], or white-to-black transitions [11].

Unfortunately, such target-based methods are typically per-
formed offline, separately from subsequent processing, and cannot
correct calibration errors that occur during the operation of the sen-
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Big interest from leading companies: 
Google, Apple, Nvidia, Mitsubishi, etc.
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Sparse modeling for computer vision
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Video surveillance

Sequence of video frames with a static background

Problem: detect any activity in the foreground

…

… 

RPCA  M = L0 + S0

This is a separation problem!frame 2frame 1
video sequence

…
frame Lframe 2frame 1

low-rank background

…
frame Lframe 2frame 1

sparse foreground

Model: V = L + S

Wright et al., Proc. NIPS, 2009



Sparse modeling for computer vision

Application: advanced surveillance technology

Model: V = L + S

Wright et al., Proc. NIPS, 2009



Removing shadows and specularities from face images

(a) M (b) L̂ (c) Ŝ (a) M (b) L̂ (c) Ŝ

Corrections of specularities in the eyes, shadows, brightness saturation, ...

Sparse modeling for computer vision

Application: removing shadow and specularities from faces

face low-rank sparse face low-rank sparse

Model: V = L + S
Wright et al., Proc. NIPS, 2009
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Sparse modeling for machine learning

Application: Recommender systems

frame L

frame L

The Netflix problem

Netflix database
About half a million users

About 18,000 movies

People rate movies

Sparsely sampled entries

Challenge
Complete the “Netflix matrix”

Many such problems ! collaborative filtering, partially filled out surveys...

• Recommender systems 
 

– observe partial information  
 
   “ratings” 
   “clicks” 
   “purchases” 
   “compatibilities” 

 

• The Netflix problem 
 

– from approx. 100,000,000 ratings 
predict 3,000,000 ratings  
 

– 17770 movies x 480189 users 
 

– how would you automatically predict? 
 

 

Recommended for you: A more familiar example 
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Recommended for you: A more familiar example 

Us
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s:
 0

.5
M

Movies: 18K

Matrix completion

Matrix M 2 Rn1⇥n2

Observe subset of entries

Can we guess the missing entries?

2

6666664

⇥ ? ? ? ⇥ ?
? ? ⇥ ⇥ ? ?
⇥ ? ? ⇥ ? ?
? ? ⇥ ? ? ⇥
⇥ ? ? ? ? ?
? ? ⇥ ⇥ ? ?
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7777775

$1 million dollar 
“Netflix” problem
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Practical information

Course website:  
https://cigroup.wustl.edu/teaching/cse-585t-2018

Recommended reading:



Practical information

High-level learning plan: 
• Introduction, motivation, basics of linear algebra 
• Theory: recovery guarantees and compressive sensing 
• Algorithms: iterative thresholding, splitting methods, 

and stochastic optimization 
• Applications: imaging, learning, and vision



Practical information

By the end of the semester, hopefully you will be able to 
• Understand the concepts behind sparse modeling 
• Comment on algorithms and do some implementations 
• Read most publication in the field 
• Apply most relevant techniques in your careers



Practical information

Grading: Attendance (10%)

➡ Important since we have no homework and exams

➡ No attendance sheet, but I will know who is here



Practical information

Grading: Class participation (30%)

➡ Regular student lectures

➡ Four students work together each time

➡ Check the list of topics on the course page

➡ Topics will include most popular publications in the field

➡ Understand the basics and provide your comment

➡ Extra appreciation for demo and implementations



Practical information

Grading: Class participation (30%)

➡ Topic 1: Compressive sensing

➡ Topic 2: Sparse MRI

➡ Topic 3: Reweighted l1-minimization

➡ Topic 4: Compressive sensing and compression

➡ Topic 5: Fast ISTA

➡ Topic 6: Variable splitting and ADMM

➡ Topic 7: Total variation

➡ Topic 8: Total generalized variation

➡ Topic 9: Dictionary learning

➡ Topic 10: Convolutional dictionary learning



Practical information

Grading: Class participation (30%)

➡ Topic 11: Online learning

➡ Topic 12: Learned ISTA

➡ Topic 13: Super-resolution CNN (SR-CNN)

➡ Topic 14: Trainable nonlinear reaction diffusion (TNRD)

➡ Topic 15: Plug-and-play priors (PnP)

➡ Topic 16: Regularization by denoising (RED)

➡ Topic 17: Bayesian compressive sensing

➡ Topic 18: Approximate message passing (AMP)

➡ Topic 19: Using trained CNNs as priors

➡ Topic 20: Deep image prior (DIP)



Practical information

Grading: Project (60%)

➡ Group sizes between 1 and 4 students

➡ Each student submits individual proposal

➡ Each student submits individual report

➡ Group presentation

➡ Any topic related to the course is acceptable



Conclusion

The goal of CSE 585T is to help you understand and apply the basics

Ulugbek S. Kamilov 
Computational Imaging Group (CIG) 
Washington University in St. Louis 
kamilov@wustl.edu  
http://kamilov.info  
@ukmlv

CONTACT INFO

This is an active research area with many open questions

Sparse modeling is now extensively used in industry and research


