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Three simple stories about sparse models

e Imaging: Sparsity revolution in imaging
e Vision: Foreground-background separation

e Learning: Recommender systems
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A contemporary paradox:
we acquire more data than we end up using
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A contemporary paradox:
we acquire more data than we end up using

iPhone 7 with Raw: 26 MB JPEG: 500 KB
12 MP camera

« Large amount of measured data
 Most of this data is thrown away afterwards
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A contemporary paradox:
we acquire more data than we end up using

Energy of natural images is highly concentrated
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A contemporary paradox:
we acquire more data than we end up using
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A long established sensing pipeline in imaging
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A contemporary paradox:
we acquire more data than we end up using

A long established sensing pipeline in imaging
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‘i‘ What are possible :
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Compressive imaging requires
some theory and advanced algorithms
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Compressive imaging requires
some theory and advanced algorithms

What happens if we simply take less measurements?

Sinogram with
’ M << N
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Compressive imaging requires
some theory and advanced algorithms

What happens if we simply take less measurements?

Reconstruction

1 Remarks:
. 9 ' . . .
min {5 |y — Hf|| 52} : 1. Noise amplification
. &. Bad for compressive imaging
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Compressive imaging requires
some theory and advanced algorithms

What happens if we simply take less measurements?

Reconstruction

Remarks:
+ 1. Blurry images
. 2. Linear solution

Andrey N. Tikhonov |
(1906-1993)

—




&2 Washington

University in St.Louis

Compressive imaging requires
some theory and advanced algorithms

What happens if we simply take less measurements?

. Remarks:
. 1. Compressive acquisition
. 2. Nonlinear algorithms
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Compressive imaging requires
some theory and advanced algorithms

First part of the course will cover the
theory of compressive imaging:

* How to optimally measure? |
* How many measurements are needed? Emmanuel

Candes
e How to reconstruct?

Low-cost, fast, sensitive
optical detection
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Candes, Romberg, Tao, IEEE Trans. Inf. Theory, 2006
Donoho, IEEE Trans. Inf. Theory, 2006



&2 Washington

niversity inSt.Louis

Compressive imaging requires
some theory and advanced algorithms V =\

Application: MRI done 10x faster

Fu11 sampling Low-resolution Linéar Sparse
(slow) acquisition reconstruction reconstruction

Big interest from leading companies:
Siemens, GE, Phillips, and etc.

3D MRI image

Lustig et al., IEEE Signal Process. Mag., 2008
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Compressive imaging requires
some theory and advanced algorithms

Application: Autonomous driving

calibration
and
fusion

camera {'

Big interest from leading companies:
Google, Apple, Nvidia, Mitsubishi, etc.

Degraux, Kamilov, Boufounos, and Liu., IEEE ICIP, 2018
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@ Learning: Recommender systems



&2 Washington
niversity inSt.Louis

Sparse modeling for computer vision

Application: advanced surveillance technology

low-rank background
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Camera system

Wright et al., Proc. NIPS, 2009
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Sparse modeling for computer vision

Application: advanced surveillance technology

Wright et al., Proc. NIPS, 2009
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Sparse modeling for computer vision

Application: removing shadow and specularities from faces

low-rank sparse

Wright et al., Proc. NIPS, 2009



3 Washington

S5
University in St.Louis

Three simple stories about sparse models

e Imaging: Sparsity revolution in imaging
@ Vision: Foreground-background separation
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Sparse modeling for machine learning
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Practical information

Course website:
https://cigroup.wustl.edu/teaching/cse-585t-2018

Recommended reading:

|

Ffoundaation

Signal Processiﬁg

e .
Michael Elad m
Sparse and
Redundant
Representations

From Theory to Applications
in Signal and Image Processing

@ Springer
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Practical information

High-level learning plan:
 Introduction, motivation, basics of linear algebra

 Theory: recovery guarantees and compressive sensing

* Algorithms: iterative thresholding, splitting methods,
and stochastic optimization

* Applications: imaging, learning, and vision

‘~ | Theory
pplications 33%
33%

Algorithms
335%




Practical information

By the end of the semester, hopefully you will be able to
Understand the concepts behind sparse modeling
Comment on algorithms and do some implementations
Read most publication in the field

* Apply most relevant techniques in your careers

Sooner or later you're gonna
realize, just like | did...

| - /“"

. WThere'sa difference between

. Wknowing the path and |
walking the path.
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Practical information

Grading: Attendance (10%)

= Important since we have no homework and exams

= No attendance sheet, but | will know who is here
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Practical information

Grading: Class participation (30%)

= Regular student lectures

= Four students work together each time

= Check the list of topics on the course page

= Topics will include most popular publications in the field
= Understand the basics and provide your comment

= Extra appreciation for demo and implementations
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Practical information

Grading: Class participation (30%)
= Topic 1: Compressive sensing
= Topic 2: Sparse MRI
= Topic 3: Reweighted I1-minimization
= Topic 4: Compressive sensing and compression
= Topic 5: Fast ISTA
= Topic 6: Variable splitting and ADMM
= Topic 7: Total variation
= Topic 8: Total generalized variation
= Topic 9: Dictionary learning

= Topic 10: Convolutional dictionary learning



Practical information

Grading: Class participation (30%)

= Topic 11:
= Topic 12:
= Topic 13:
= Topic 14:
= Topic 15:
= Topic 16:
= Topic 17:
= Topic 18:
= Topic 19:
= Topic 20:

Online learning

Learned ISTA

Super-resolution CNN (SR-CNN)

Trainable nonlinear reaction diffusion (TNRD)
Plug-and-play priors (PnP)

Regularization by denoising (RED)

Bayesian compressive sensing

Approximate message passing (AMP)

Using trained CNNs as priors

Deep image prior (DIP)

& Whshington

University in St.Louis
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Practical information

Grading: Project (60%)

= Group sizes between 1 and 4 students

= Each student submits individual proposal
= Each student submits individual report

= Group presentation

= Any topic related to the course is acceptable
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Conclusion

Sparse modeling is now extensively used in industry and research
The goal of CSE 585T is to help you understand and apply the basics

This is an active research area with many open questions

e | CONTACT INFO
. Ulugbek S. Kamilov—

. Computational Imaging Group (CIG)
. Washington University in St. Louis

. kamilov@ewustl.edu

i http://kamilov.info

i @ukmlv




