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Claude Shannon (1916-2001)

In 1949, Shannon set the foundation of digital era

Theorem [Shannon]: If a function f(x) contains no frequencies higher than !

max

(in radians per second), it is completely determined by giving its ordinates at a

series of points spaced T = ⇡/!

max

seconds apart.
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Fig. 1. Frequency interpretation of the sampling theorem: (a)
Fourier transform of the analog input signal , (b) the sampling
process results in a periodization of the Fourier transform, and (c)
the analog signal is reconstructed by ideal low-pass filtering; a
perfect recovery is possible provided that .

linear interpolation. Despite these apparent mismatches with
the physical world, we will show that a reconciliation is
possible and that Shannon’s sampling theory, in its modern
and extended versions, can perfectly handle such “nonideal”
situations.
Ten to 15 years ago, the subject of sampling had reached

what seemed to be a very mature state [26], [62]. The re-
search in this area had become very mathematically oriented,
with less and less immediate relevance to signal processing
and communications. Recently, there has been strong revival
of the subject, which was motivated by the intense activity
taking place around wavelets (see [7], [35], [80], and [85]).
It soon became clear that the mathematics of wavelets were
also applicable to sampling, but with more freedom because
no multiresolution is required. This led researchers to reex-
amine some of the foundations of Shannon’s theory and de-
velop more general formulations, many of which turn out to
be quite practical from the point of view of implementation.
Our goal in this paper is to give an up-to-date account of

the recent advances that have occurred in regular sampling.
Here, the term “regular” refers to the fact that the samples
are taken on a uniform grid—the situation most commonly
encountered in practice. While the paper is primarily con-
ceived as a tutorial, it contains a fair amount of review mate-
rial—mostly recent work: This should make it a useful com-
plement to the excellent survey article of Jerri, which gives
a comprehensive overview of sampling up to the mid-1970’s
[62].
The outline of this paper is as follows. In Section II, we

will argue that the requirement of a perfect reconstruction
is an unnecessarily strong constraint. We will reinterpret the
standard sampling system, which includes an anti-aliasing
prefilter, as an orthogonal projection operator that computes
the minimum error band-limited approximation of a not-nec-
essarily band-limited input signal. This is a crucial obser-
vation that changes our perspective: instead of insisting that

the reconstruction be exact, we want it to be as close as pos-
sible to the original; the global system, however, remains un-
changed, except that the input can now be arbitrary. (We can
obviously not force it to be bandlimited.)
In Section III, we will show that the concept extends nicely

to the whole class of spline-like (or wavelet-like) spaces gen-
erated from the integer shifts of a generating function. We
will describe several approximation algorithms, all based on
the standard three-step paradigm: prefiltering, sampling, and
postfiltering—the only difference being that the filters are
not necessarily ideal. Mathematically, these algorithms can
all be described as projectors. A direct consequence is that
they reconstruct all signals included within the reconstruc-
tion space perfectly—this is the more abstract formulation
of Shannon’s theorem.
In Section IV, we will investigate the issue of approxima-

tion error, which becomes relevant once we have given up
the goal of a perfect reconstruction. We will present recent
results in approximation theory, making them accessible to
an engineering audience. This will give us the tools to select
the appropriate sampling rate and to understand the effect of
different approximation or sampling procedures.
Last, in Section V, we will review additional extensions

and variations of sampling such as (multi)wavelets, finite el-
ements, derivative and interlaced sampling, and frames. Ir-
regular sampling will also be mentioned, but only briefly, be-
cause it is not the main focus of this paper. Our list of sam-
pling topics is not exhaustive—for instance, we have com-
pletely left out the sampling of discrete sequences and of
stochastic processes—but we believe that the present paper
covers a good portion of the current state of research on
regular sampling. We apologize in advance to those authors
whose work was left out of the discussion.

II. SHANNON’S SAMPLING THEOREM REVISITED

Shannon’s sampling theory is applicable whenever the
input function is bandlimited. When this is not the case, the
standard signal-processing practice is to apply a low-pass
filter prior to sampling in order to suppress aliasing. The
optimal choice is the ideal filter , which
suppresses aliasing completely without introducing any
distortion in the bandpass region. Its impulse response is

. The corresponding block diagram is shown
in Fig. 2. In this section, we provide a geometrical Hilbert
space interpretation of the standard sampling paradigm. For
notational simplicity, we will set and rescale the time
dimension accordingly.
In 1941, the English mathematician Hardy, who was re-

ferring to the basis functions in Whittaker’s cardinal series
(1), wrote: “It is odd that, although these functions occur re-
peatedly in analysis, especially in the theory of interpolation,
it does not seem to have been remarked explicitly that they
form an orthogonal system” [55]. Orthonormality is a fun-
damental property of the sinc-function that has been revived
recently.
To understand the modern point of view, we have to con-

sider theHilbert space , which consists of all functions that
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Wavelet transform

Inverse wavelet transform

No significant visual quality loss after  
discarding 90% of coefficients



Contemporary imaging paradox:  
we collect a lot of redundant data



Contemporary imaging paradox:  
we collect a lot of redundant data

MeasureTrue object Compress Use

Is there a smarter way?

N pixels K coefficients 
(K << N)

A long established sensing pipeline in imaging
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where, immediately after the RF excitation, a Gx gradient field
is applied followed by a Gy gradient. The phases of the magneti-
zation are shown at different time points, along with the k-
space trajectory and the MR signal. This encoded sampling and
the freedom in choosing the sampling trajectory play a major
role in making CS ideas naturally applicable to MRI.

IMAGE ACQUISITION
Constructing a single MR image commonly involves collecting a
series of frames of data, called acquisitions. In each acquisition,
an RF excitation produces new transverse magnetization, which
is then sampled along a particular trajectory in k-space. Due to
various physical and physiological constraints [1], most MRI
imaging methods use a sequence of acquisitions and each one
samples part of k-space. The data from this sequence of acquisi-
tions are then used to reconstruct an image. Traditionally the k-
space sampling pattern is designed to meet the Nyquist
criterion, which depends on the resolution and field of view
(FOV) as shown in Figure 2. Violation of the Nyquist criterion
causes image artifacts in linear reconstructions. The appearance
of such artifacts depends on the details in the sampling pattern,
as discussed below. 

In MRI, it is possible to selectively excite a thin slice through
the 3-D volume. This reduces the data collection to two dimen-
sions in k-space for each slice. The volumetric object is imaged
by exciting more slices, known as a multislice acquisition. When
a volume or a thick slab is excited, a 3-D k-space volume must
be sampled. Each of these approaches is very common and has
advantages in specific applications.

We have considerable freedom in designing the k-space
trajectory for each acquisition. Some trajectories are illustrat-
ed in Figure 2. By far the most popular trajectory uses

straight lines from a Cartesian grid. Most pulse sequences
used in clinical imaging today are Cartesian. Reconstruction
from such acquisitions is wonderfully simple: apply the
inverse fast Fourier transform (FFT). More importantly,
reconstructions from Cartesian sampling are robust to many
sources of system imperfections. 

While Cartesian trajectories are by far the most popular,
some other trajectories are in use, including sampling along
radial lines and sampling along spiral trajectories. Radial
acquisitions are less susceptible to motion artifacts than
Cartesian trajectories and can be significantly undersampled
[2], especially for high contrast objects [3]. Spirals make effi-
cient use of the gradient system hardware and are used in
real-time and rapid imaging applications [4]. Efficient recon-
struction from such non-Cartesian trajectories requires
using filtered back-projection or interpolation schemes (e.g.,
gridding [5]).

RAPID IMAGING
MR acquisition is inherently a process of traversing curves in
multidimensional k-space. The speed of k-space traversal is lim-
ited by physical constraints. In current systems, gradients are
limited by maximum amplitude and maximum slew-rate (see
Figure 1). In addition, high gradient amplitudes and rapid
switching can produce peripheral nerve stimulation [1]. Since
this must be avoided, physiology provides a fundamental limit to
gradient system performance.

This fundamental limit has caused many researchers to
search for methods to reduce the amount of acquired data with-
out degrading image quality. Many such efforts are inspired by
the idea that MRI data are redundant. Such redundancy can be
created by design. For example, using multiple receiver coils [6],
[7] provides more useful data per MR acquisition, requiring
fewer acquisitions per scan. Redundancy can be a known or
modeled signal property such as spatial-temporal correlation
[8]–[11] or a redundancy learned and extracted from the data
itself [12]–[14]. 

All efforts at reduced data acquisition might well be labeled
“compressive sampling,” however, the underlying phenomena
being exploited are often quite different. In this article, we focus
on approaches rooted in the theory described in [15]–[17]; such
approaches are called here CS approaches. Much ongoing work
is based on such approaches [18]–[23].

THE SPARSITY/COMPRESSIBILITY OF MR IMAGES
Natural images can often be compressed with little or no percep-
tible loss of information [24]. The world-wide-Web demonstrates
this billions of times weekly. Transform-based compression is a
widely used strategy adopted in the JPEG, JPEG-2000, and MPEG
standards. This strategy first applies a sparsifying transform,
mapping image content into a vector of sparse coefficients, and
then encodes the sparse vector by approximating the most signif-
icant coefficients and ignoring the smaller ones. The discrete
wavelet transform (DWT) is a common sparsifying transform and
is at the heart of JPEG-2000 [24].

[FIG2] The Nyquist criterion sets the required k-space coverage,
which can be achieved using various sampling trajectories. Image
resolution is determined by the extent of the k-space coverage.
The supported field of view is determined by the sampling
density. Violation of the Nyquist criterion causes artifacts in
linear reconstructions, which depend on the sampling pattern.

IEEE SIGNAL PROCESSING MAGAZINE [74] MARCH 2008

With traditional reconstruction 
dropping samples would result 
in visible artifacts in the image

Lustig et al., Magnetic Resonance in Medicine, 2007
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Optimization for improving the  
resolution of a laser sensor

Laser sensors have low-spatial resolution

One can use write an optimization problem to 
enhance the resolution by fusing camera and laser

Degraux, Kamilov, Boufounos, Liu, Proc. ICIP 2016
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The goal of optimization is to find the  
smallest value of a function under constraints

Mathematical optimization problem

minimize f(x)

subject to x 2 X

• Optimization variable: x = (x1, . . . , xn)

• Objective function: f : Rn ! R

• Contraint set: X = {x |h(x) = 0} \ {x |g(x)  0}

• Optimal solution x

⇤ has smallest value of f among all vectors that satisfy the
constraints



Sample applications of optimization: 
finance, engineering, and computer science

portfolio optimization

• variables: amounts invested in different assets

• constraints: budget, minimum return

• objective: overall risk or return variance

device sizing in electronic circuits

• variables: device width and lengths

• constraints: manufacturing limits, timing requirenemnts

• objective: power consumption

machine learning

• variables: model parameters

• constraints: prior information, parameter limits

• objective: prediction error



Brief history of optimization

Antiquity: Greek mathematicians solve some optimization 
problems that are related to their geometrical studies

• Euclid (300bc): minimal distance between a point and a line

• Heron (100 bc): light travels between two points through the 

path with shortest length when reflecting from a mirror

17th-18th: before the invention of calculus of variations only 
some separate optimization problems are being investigated

• Kepler (1615): Optimal dimensions of wine barrel. Formulated 
the secretary problem when searching for a new wife


• Fermat: derivative of a function vanishes at the extreme point 
the (1636). Shows that light travels between two points in 
minimal time (1657)

Newton (1660s) and Leibniz (1670s) create mathematical analysis 
that forms the basis of calculus of variations

http://www.mitrikitti.fi/opthist.html

http://www.mitrikitti.fi/opthist.html
http://www.apple.com


Brief history of optimization

19th century: the first optimization algorithms are presented

• Legendre (1806): least square method, which also Gauss claims 
to have invented


• Cauchy (1847): presents the gradient method

• Gibbs shows that chemical equilibrium is an energy minimum

20th century: the field of algorithmic research expands as 
electronic calculation develops

• von Neuman and Morgenstern (1944): dynamic programming 
for solving sequential decision problems


• Dantzig (1947): simplex method for solving LP-problems

• Kuhn and Tucker (1951): reinvent optimality conditions for 

nonlinear problems. Similar conditions in 1939 by Karush.

• Nesterov (1983): accelerated gradient method

• Karmarkar (1984): polynomial time algorithm for LP-problems 

begins a boom of interior point methods.

• Modern era: nonsmooth analysis, stochastic optimization…

http://www.mitrikitti.fi/opthist.html

http://www.mitrikitti.fi/opthist.html
http://www.apple.com
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Practical information

Course website:  
https://cigroup.wustl.edu/teaching/ese415

Recommended reading:

Schedule: 
Lectures: Tue and Thu at 1:00-2:30 pm 
Recitations: ???

https://cigroup.wustl.edu/teaching/ese415


Practical information

By the end of the semester, hopefully, you will be able to:  
• recognize and formulate problems as optimization

• characterize optimal solutions

• develop code for optimization algorithms

Topics:  
• optimality conditions

• convex sets and functions

• constrained and unconstrained optimization

• optimization algorithms

• analysis of optimization algorithms

• examples and applications



Practical information

Grading policy:  
• homework (40%) consists of 6 assignments

• midterm (30%) is on Thursday, 8 March 2017

• final (30%): is on Tuesday, 8 May 2017

Grading convention:  
• 93-100        A

• 90-92          A-

• 88-89          B+

• 83-87          B

• 80-82          B-

• 70-79          C

• 60-69          D

• below 60     F



Practical information

Head TAs:  
• Hesam Mazidi (hmazidi@wustl.edu)

• Yu Sun (sun.yu@wustl.edu)


TA team:  
• Tao Ge (getao@wustl.edu)

• Yueying He (he.yueying@wustl.edu)

• Yunshen Huang (huang.yunshen@wustl.edu)

• Xin Ning (xin.ning@wustl.edu)

• Chang Xue (chang.xue@wustl.edu)

• Boyang Zhou (bzhou24@wustl.edu)

• Yufei Zhou (yufei.zhou@wustl.edu)

mailto:hmazidi@wustl.edu
mailto:sun.yu@wustl.edu
mailto:getao@wustl.edu
mailto:he.yueying@wustl.edu
mailto:huang.yunshen@wustl.edu
mailto:xin.ning@wustl.edu
mailto:chang.xue@wustl.edu
mailto:bzhou24@wustl.edu
mailto:yufei.zhou@wustl.edu


Conclusion

The goal of ESE 415 is to help you understand and apply the basics

Ulugbek S. Kamilov 
Computational Imaging Group (CIG) 
Washington University in St. Louis 
kamilov@wustl.edu  
http://cigroup.wustl.edu  

CONTACT INFO

Optimization is still an active research area with many open questions

Optimization is extensively used in almost all engineering applications


